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ABSTRACT 
Ridge regression has been introduced to solve 

the multicollinearity in multiple linear regres- 
sion. The performance of approximate ridge esti- 
mators (AOPT) and Optimume ridge coefficients 
(OPT) are compared with ordinary least square (OLS) 
estimators by using the Monte Carlo simulation 
technique. The results indicated that the corre- 
lation coefficient r between two independent vari- 
ables is an important factor to choose the method. 

For instance, when the r value is less than 0.5, 
the OLS performs as good as AOPT and OPT methods. 
When the r lies around 0.6 to 0.8, OPT is the best 
technique among those three methods, and AOPT is 
better than OLS. For those data with high correl- 
ations such as 0.9, both OPT and AOPT are all good 
methods to use. In general conclusion, the per- 
formance of OPT is better than AOPT, and the AOPT 
is better than OLS in terms of minimizing the mean 
square error of estimation in regression analysis 
to solve the multicollinearity among the indepen- 
dent variables. 

INTRODUCTION 
Multiple linear regression technique has been 

extensively used by the fields of engineering, 
science, technology, economics and social science 
for data analysis. But, the estimation of regres- 

sion coefficients can present problems when multi - 
collinearity (highly correlated independent vari- 
ables) exists among variables. For discussion of 
problems of multicollinearity, see Althauser, 1971; 
Blalock, 1963, 1944; Christ, 1966; Gordon, 1963; 

Johnston, 1972; Rockwell, 1975. 

The problems of multicollinearity have been 
solved by one statistical technique called ridge 
regression which was introduced by Hoerl and 
Kennard (1970a. 1970b) and applied by others 
(Deegan. 1975: Dempster. Schartzoff and Wermuth. 
1977: McDonald and Schwing. 1973: McDonald and 
Galarneau. 1973: Vinod. 1975; etc.) These authors 

showed that by adding a small non -negative con- 
stant k the diaconal of the correlation matrix 

of independent variables to substantially reduce 
error variance and thereby control for the general 
instability of ordinary least square (OLS) esti- 
mates. 

The question remains, however, of the appro- 
priate amount of bias to introduce as the ridge 
analysis increment. In recent papers Hoerl, et.al. 
(1975) have suggested an approximation to the 
optimum value k (AOPT) so that ridge regression 
produces a smaller square error than OLS. Shih 
and Kasarda (1977) have proposed a method for 
selecting the optimal k (OPT) for ridge analysis 
in terms of minimizing the mean square error of 
estimation. 

The purpose of this paper is based on the 
Monte Carlo simulation technique to compare the 
performance of ordinary least square (OLS) with 
AOPT and OPT ridge regressions by simulating the 
different patterns of regression coefficients with 
different degrees of collinearity or multicollin- 
earity among independent variables. 
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METHODOLOGY DESCRIPTION 
Ridge Regression and Optimization 

Consider the standard model for multiple 
linear regression: 

Y =Xß +e (1) 

where Y is a nxl vector of observations on a de- 
pendent variable, X is a nxp matrix of nonstochas- 
tic regressors with rank p, is a pxl vector of 
unknown regression coefficients, and is a nxl 

vector of unknown disturbances. Assuming E(e) =0, 
and E(ee') =G2In, the ordinary least square esti- 
mator (OLS) of is 

= (X X) 2X Y (2) 

with Var(ß) = (X'X) (3) 

where is an unbiased estimator of and has the 

minimum variance within the class of unbiased es- 
timators (Goldberger, 1964). As we noted,,,if the 

X's are highly collinear, the variance of tends 
to become large, and little confidence can be 
placed in as an estimator of ß. By adding posi- 
tive constant k to each of the diagonal elements 
of X'X one can reduce the variance of the regres- 
sion estimate, but at the expense of some bias. 
The resulting is the 'ridge estimator 

*= (X X + kI) -1X Y (4) 

where k is a positive scalar, and ß* is a biased 
estimator of with 

Var(ß *) (X1C+kI)- 1X'X(X- X +kI) (5) 

ß* is equal to when k equals zero. 
As have been shown in Hoerl and Kennard (1970 

a, b), the mean square error of ridge estimator ß* 
can be written as . 

MSE(ß *) VAR(B*) + Bias2(ß *) 
where 

VAR(ßi) = 

with 
Z = (X'X + kI)-1X.X(XX + kI)-1 

(6) 

(7) 

(8) 

and 
Bias2(ß *) = [E(ß * -ß) (9) 

In equation 6, the total variance decreases 
as k increases, while the square bias increases 

with k. Based on these monotonic properties and 

existence of minimum point which also shown by 
Hoerl and Kennard (1970a, b), Shih and Kasarda 
(1977) have also shown that by computerized iter- 

ation procedures one can locate the optimum point 
k, which minimizes a consisten estimator of MSE 
(ß *), namely mse(ß *(k)). Where 

mse(ß *(k)) = +(0*(k) -B)'(0*(k)4)(10) 
where 

a2 = - /(n -p) (11) 

Let V(k) denote an estimator of total vari- 

ance of *(k) and BS(k) denote an estimator of 

the bias square, then equation (10) becomes 

mse(ß *(k)) = V(k) + BS(k) 

where 

V(k) = Tr(Z), 

BS(k) = *(k) 

V(0) = -1, and 

(12) 



S(0) = 0 for k > 0 

For given k1 > k2-> 0, we know that 

V(k2) >V(k1) 
and 

(13) 

S(k2) < S(ki) (14) 

The existence of a minimum point shows that 
mse[ß *(k -c)] > mse[ß *(k)] 

< mse[ß *(k +c)] (15) 

for a small constant c and leads to the conclu- 
sion that k is a point which gives the minimum 
mse(8 *). 

The iteration procedures to obtain this 
point can be summarized as follows: 

(a) Read input data and desired tolerance 
of accuracy. 

(b) Compute â2 and from equations 11 and 
2, respectively. 

(c) Initiate the k = 0 and an increment 
= 0.1. 

(d) Compute V(0) and BS(0). 
(e) Let a new variable kl = k + Ak. 

(f) Compute V(kl) and BS(kl). 
(g) Check the relationship between BS(kl) - 

BS(k) and V(k) - V(kl). 

(h) If BS(kl) - BS(k) < V(k) - V(kl), then 
let k = kl, V(k) = V(kl), BS(k) = BS(kl), and 
the procedures of e, f, and g are repeated. 

(i) If BS(kl) - BS(k) > V(k) - V(kl), then 
check if the tk is less than a desired tolerance. 
If the answer is no, the Ak is replaced by /10 
and the procedures of e, f, and g are repeated. 
If the answer is yes, the iteration procedures 
are complete, and kl is the optima] value. 

The above procedures have been converted to 
a computer program with Fortran IV language. 

Hoerl, et. al. (1975) also suggested that an 
approximation method to obtain the optimal value 
ka (AOPT) can be expressed as follows: 

ka Pa (16) 

By simulation technique they showed that ka 
can produce a smaller average square error than 
OLS, the distribution of squared errors for the 
regression coefficients has a smaller variance 
than does that for OLS, and the probability that 
the ridge regression produces a smaller square 
error than OLS is greater than 0.50. 

Monte Carlo Simulations 
Applying simulation techniques to examine 

the performance of ridge regression has been 
found in many recent publications (McDonald and 
Galarnean, 1973; Hoerl, et.al., 1975; and 
Dempster, et.al., 1977). The basic Monte Carlo 
simulation used in this study is described as 
follows. The observations xi are generated 
based on the following simulation generator: 

xii = (1- + 
+1), (17) 

i = 1,...,n; j = 1,...,p. 
where, n is the number of observations for each 
explanatory variable; p is the number of inde- 
pendent variables; Zii are independent standard 
normal pseudo- random numbers and a is specified 
so that the correlation between any two indepen- 
dent variables is given by a2. The X's are then 
standardized so that X'X is in correlation form. 
A true regression coefficient is chosen as a 
normalized eigenvector corresponding to the 
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largest eigenvalues of the X'X matrix. Newhouse 
and Oman (1971) have noted that MSE(ß *) is mini- 
mized when is such eigenvector subject to the 
constraint that 11811 = i when k is fixed. 

Observations on the dependent variable are 
determined by 

yi 
0 +8 + ... +0 

p ip 
+ ei (18) 

where x's are computed from equation 17, ci are 
independent normal (0, a2) psuedo - random numbers 
and 80 is taken to be zero. The variables are 
standardized so that X'Y represents the vector of 
correlations of the dependent variable with each 
independent variable. 

Based on the Central Limit Theory, the major 
error involved in Monte Carlo simulation is a 
statistical sample error which is proportional to 
the (1 /N), where N is the total number of trials 
(Shih and Hamrick, 1974). In other words, one 
must increase the sample size by a factor of 4 in 
order to halve the possible error. Therefore, an 
additional set of samples W must be generated to 
increase the accuracy of simulation. 

Comparisons of Different Methods 
The observations generated by Monte Carlo 

simulation are used to perform ordinary least 
square (OLS) estimators, optimum ridge coeffi- 
cients (OPT), and approximate ridge estimators 
(AOPT). The symbols B, 8 *(k), and * *(k) repre- 
sent the standardized coefficients of OLS, OPT 
and AOPT, respectively. Those standardized coe- 
fficients are then transformed back to the orig- 
inal coefficients. The constant terms are then 
computed as: 

ß0 y E for OLS (19) 

j =1 

ß* (k) = - E B (k) for OPT (20) 

and 

* *(k) = - for AOPT (21) 

j =1 
where_ n 

y = (1 /n)( yi) 
i =1 
n 

x. = (1 /n)( E xi.) 
i =1 

The total mean square errors are computed as 

L = L(0) = for OLS 
i =0 

(22) 

L* = L[8 *(k)] = E ßí(k)]2 for OPT (23) 

i =0p 

L ** = L[ß * *(k)] = E [ßi- *(k)]2 for AOPT(24) 
i =0 

As noted above equals zero. 
In order to find the regression coefficients 

which can produce a smaller mean square error 
than the corresponding least squares estimator a 
measure of the improvement can be obtained by 

M* E[L *(k)] /E[L(0)] (25) 

and 
M ** = E[L * *(k)] /E[L(0)] (26) 

where E[L(k)] is the average sum of mean square 
error of specific ridge estimator. 

E[L *(k)] = (1 /W) E L* 

w =1 

(27) 



E[L * *(k)] = (1 /W) E L** (28) 

w =1 

and 
E[L(0)] = (1 /W) E L (29) 

w =1 
where Lw, LW, and LW* are total mean squat of 

sample w for OLS, OPT, and AOPT, respectively. 
W is the number of sample sets as indicated in 

the section of Monte Carlo simulation. The 
smaller value of M* and M ** implies that the 
method used has a better solution. 

EXAMPLE OF APPLICATIONS 
The values of n = 100; p = 3; a = 0.6, 0.7, 

0.8, 0.9, 0.95, and 0.99; and a = 0.01, 0.21, 
0.41, 0.61, 0.81, and 1.01 are used in this 
study. The coefficients of corresponding to 
each a value are given in Table 1. 

TABLE 1: Values of a and Coefficient Vectors 
Used in Simulation 

a 
B1 

B2 63 

0.60 .575 .573 .583 

0.70 .576 .574 .582 

0.80 .576 .575 .581 

0.90 .577 .576 .580 

0.95 .577 .577 .579 

0.99 .577 .577 .578 

Combining the six coefficients of a with six 
standard deviations of a, thirty -six sets of data 
are generated. The values of standardized coeffi- 
cients and total mean square are computed based on 
equations 19, 20, 21, 22, 23, and 24. 

As mentioned in previous sections of Monte 
Carlo simulation, the accuracy of estimations 
can be improved by increasing the sample size so 
that additional 50 samples of observations with 
n = 100 and p = 3 are generated to each of the 
36 different sets of data. The independent 
variables and true coefficient are unchanged, 
while the random error term is varied, so that 
the dependent variable is changed. The average 
of optimum k for OPT and AOPT; and average mean 
square for OLS, OPT and AOPT in these 50 samples 
are computed. The results are also listed in 
Table 2. The measure of M* and M ** used to com- 
pare the different methods are computed based on 
equations 25 and 26. The results are also listed 
in Table 2. 

RESULTS AND DISCUSSIONS 
As the example given in previous sections 

the results of the performance of MSE in each 
method of OLS, OPT and AOPT with a = 0.6, 0.7, 

0.8, 0.9, 0.95, and 0.99 corresponding to the 
six error terms were plotted on Figures 1, 2, 

3, 4, 5, and 6, respectively. The following 
conclusions can be drawn. 

First, when the correlation coefficient be- 
tween independent variables are less than 0.5 
(i.e. the cases of a = 0.6 and 0.7 as shown in 
Figure 1 and 2), the MSE of OLS is close to the 
ridge estimators of OPT and AOPT. The deviation 
of result between OPT and AOPT is also negligible. 
As Table 2 shows, the value of M* and M ** are 
close to 1 when the r value equal 0.36 and 0.49. 
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This implies that the OLS method is as good as 
OPT and AOPT methods when the correlation coeffi- 
cient is less than 0.5. 

Second, when the correlation coefficient 
exist between 0.6 and 0.8 (i.e. the cases of 
a = 0.8 and 0.9 plotted on Figures 3 and 4), the 
MSE of OLS is much larger than OPT and AOPT, and 
OPT is much smaller than AOPT. As Table 2 shows, 
the value of M* is much less than M * *. These 
imply that the ridge regression analysis is re- 

quired when correlation coefficients exist be- 
tween 0.6 and 0.8, and the OPT method is much 
better than AOPT method. 

Third, when the correlation coefficient is 

greater than 0.9 (i.e. the cases of a 0.95 and 
0.99 as shown in Figures 5 and 6), the MSE of OPT 
is much larger than both OPT and AOPT methods and 
the performance of the two ridge type estimators 
gave an approximate same solution. As Table 2 

shows, the value of M* is similar to the M ** when 
a equals 0.95 and 0.99. These imply that the 
ridge analysis is required when the correlations 
is greater than 0.9 and both OPT and AOPT methods 
give a similar solution. 

Fourth, all M* and M ** in Table 2 are de- 
creasing while error terms a are increasing. 
This implies that higher the error term a the 
better ridge estimator is performed. For in- 
stance, M* equals .972 when a = 0.01 and equals 
.379 when a = 1.01 for the data with a = .95. 

This means that the MSE of OPT is 97% of OLS when 
error is 0.01, but it is only 38% of the OLS when 
error becomes 1.01. 

Fifth, as Table 2 shows, the value of M* is 
much smaller than M ** and M ** is smaller than or 
equal to one. This concludes that the perform- 
ance of OPT is better than AOPT, and the AOPT is 
better than OLS in terms of minimizing the mean 
square error of estimation in regression analysis 
to solve the multicollinearity among the indepen- 
dent variables. 

SUMMARY AND CONCLUSIONS 
The estimation of regression coefficients in 

multiple linear regression can present problems 
when multicollinearity exists among independent 
variables. This type of problem has been solved 
by one of the statistical methods called ridge 
regression. This technique shows that by adding 
a non -negative constant "k" to the diagonal of 
correlation matrix it is possible to substantially 
reduce error variance of estimators. The methods 
of optimum ridge coefficients (OPT) and approxi- 
mate ridge estimators (AOPT) are used in this 
study to compare the performance of each techni- 
que with the ordinary least square (OLS) estima- 
tors. 

The Monte Carlo simulations are used to gen- 
erate the observations of independent variables. 
The simulations are performed based on different 
correlation coefficients and error terms. Com- 

parisons of the AOPT and OPT methods are made 
with OLS technique. The results indicated that 
when correlation between two independent variables 

is less than 0.5, the OLS performs as good as 

ridge regression, i.e., the multicollinearity 
problem does not exist in this case. But, when 

correlation lies aroun 0.6 and 0.8, OPT method is 

considered the best among those three methods, 
and AOPT method is better than OLS method. For 

those data with high correlation such as 0.9, 



TABLE 2: Comparisons of the Simulation Results of AOPT and OPT Methods with OLS Method in Different 
Correlation Coefficient and Standard Deviations. 

a 

Correl. 
Coeffi. 

r 

Stand. 

Devia. 

a 

OLS 

L(0) 

OPT AOPT 

M** L(B *(k)) Ave. k L(B * *(k)) Ave. k 

0.60 0.36 

0.01 
0.21 
0.41 
0.61 
0.81 
1.01 

0.000 
0.026 
0.081 
0.224 
0.271 
0.596 

0.000 
0.026 
0.068 
0.164 
0.193 
0.413 

0.000 
0.106 
0.212 
0.273 
0.375 
0.384 

0.000 
0.025 
0.072 
0.183 
0.204 
0.440 

0.000 

0.009 
0.034 
0.071 
0.122 
0.184 

1.000 

1.000 
0.834 
0.733 
0.694 
0.693 

1.000 

0.962 
0.891 
0.816 
0.754 
0.739 

0.70 0.49 

0.01 
0.21 

0.41 

0.61 
0.81 

1.01 

0.000 
0.031 
0.096 
0.264 
0.319 
0.703 

0.000 
0.029 
0.072 
0.174 
0.200 
0.428 

0.000 
0.122 
0.227 
0.277 
0.376 
0.377 

0.000 
0.029 
0.082 
0.205 
0.222 
0.476 

0.000 
0.010 
0.037 
0.075 
0.129 
0.188 

1.000 
0.954 
0.746 
0.658 
0.627 
0.609 

1.000 
0.948 
0.856 
0.774 
0.693 
0.677 

0.80 0.64 

0.01 

0.21 

0.41 

0.61 
0.81 

1.01 

0.000 
0.041 
0.127 
0.349 
0.418 
0.926 

0.000 
0.033 
0.074 
0.189 
0.219 
0.404 

0.000 
0.136 
0.224 
0.276 
0.375 
0.353 

0.000 
0.038 
0.101 
0.242 
0.255 
0.548 

0.000 
0.011 
0.039 
0.079 
0.135 
0.186 

1.000 
0.805 
0.583 
0.541 
0.524 
0.501 

1.000 
0.927 
0.798 
0.693 
0.610 
0.592 

0.90 0.81 

0.01 
0.21 
0.41 
0.61 
0.81 
1.01 

0.000 
0.073 
0.273 
0.445 
0.872 
1.301 

0.000 
0.033 
0.133 
0.158 
0.368 
0.509 

0.001 
0.156 
0.200 
0.257 
0.324 
0.357 

0.002 
0.063 
0.190 
0.234 
0.437 
0.582 

0.000 
0.012 
0.042 
0.081 
0.137 
0.185 

1.032 
0.452 
0.487 
0.355 
0.422 
0.391 

1.000 
0.863 

0.693 
0.524 
0.501 
0.447 

0.95 0.91 

0.01 
0.21 
0.41 
0.61 
0.81 
1.01 

0.000 
0.136 
0.415 
1.147 
1.352 
2,987 

0.000 
0.055 
0.095 
0.437 
0.434 
1.133 

0.010 
0.122 
0.169 
0.177 
0.250 
0.194 

0.000 
0.106 
0.247 
0.542 
0.507 
1.201 

0.000 
0.013 
0.040 
0.072 
0.120 
0.128 

0.972 
0.402 
0.230 
0.381 
0.321 
0.379 

1.000 
0.780 
0.523 
0.472 
0.375 
0.402 

0.99 0.98 

0.01 
0.21 
0.41 

0.61 
0.81 

1.01 

0.002 

0.641 

1.960 
5.454 
6.418 
14.092 

0.001 
0.231 

0.495 

1.968 
1.488 

4.971 

0.031 

0.086 
0.100 
0.079 
0.130 
0.104 

0.002 
0.332 
0.606 
1.950 
1.797 
4.763 

0.000 
0.010 
0.026 
0.036 
0.066 
0.053 

0.795 
0.357 
0.253 
0.361 
0.226 
0.352 

0.800 
0.517 
0.309 
0.357 
0.281 
0.338 
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both OPT and AOPT methods are good techniques to 
solve the multicollinearity in linear regression 
models. 
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